Fakultät für Mathematik und Naturwissenschaften

Publikationen

Meine Profile bei Google Scholar und ResearchGate

2023
22.
M. Schweitzer, "Integral representations for higher-order Frechet derivatives of matrix functions: Quadrature algorithms and new results on the level-2 condition number" , Linear Algebra Appl., vol. 656, pp. 247-276, 2023.
21.
K. Lund and M. Schweitzer, "The Frechet derivative of the tensor t-function" , 2023.
20.
M. Schweitzer, "Sensitivity of matrix function based network communicability measures: Computational methods and a priori bounds" , 2023.
2022
19.
M. Schweitzer, "Decay bounds for Bernstein functions of Hermitian matrices with applications to the fractional graph Laplacian" , Electron. Trans. Numer. Anal., vol. 55, pp. 438-454, 2022.
18.
M. A. Botchev, L. A. Knizhnerman and M. Schweitzer, "Krylov subspace residual and restarting for certain second order differential equations" , 2022.
17.
A. Frommer, K. Kahl, M. Schweitzer and M. Tsolakis, "Krylov subspace restarting for matrix Laplace transforms" , 2022.
16.
S. Güttel and M. Schweitzer, "Randomized sketching for Krylov approximations of large-scale matrix functions" , 2022.
2021
15.
S. Güttel and M. Schweitzer, "A comparison of limited-memory Krylov methods for Stieltjes functions of Hermitian matrices" , SIAM J. Matrix Anal. Appl., vol. 42, no. 1, pp. 83-107, 2021.
14.
A. Frommer, C. Schimmel and M. Schweitzer, "Analysis of probing techniques for sparse approximation and trace estimation of decaying matrix functions" , SIAM J. Matrix Anal. Appl., vol. 42, no. 3, pp. 1290-1318, 2021.
13.
P. Kandolf, A. Koskela, S. D. Relton and M. Schweitzer, "Computing low-rank approximations of the Frechet derivative of a matrix function using Krylov subspace methods" , Numer. Linear Algebra Appl., vol. 28, no. 6, pp. e2401, 31, 2021.
12.
B. Beckermann, A. Cortinovis, D. Kressner and M. Schweitzer, "Low-rank updates of matrix functions II: Rational Krylov methods" , SIAM J. Numer. Anal., vol. 59, no. 3, pp. 1325-1347, 2021.
2018
11.
A. Frommer, C. Schimmel and M. Schweitzer, "Non-Toeplitz decay bounds for inverses of Hermitian positive definite tridiagonal matrices" , Electron. Trans. Numer. Anal., vol. 48, pp. 362-372, 2018.
10.
A. Frommer, C. Schimmel and M. Schweitzer, "Bounds for the decay of the entries in inverses and Cauchy-Stieltjes functions of certain sparse, normal matrices" , Numer. Linear Algebra Appl., vol. 25, no. 4, pp. e2131, 17, 2018.
9.
B. Beckermann, D. Kressner and M. Schweitzer, "Low-rank updates of matrix functions" , SIAM J. Matrix Anal. Appl., vol. 39, no. 1, pp. 539-565, 2018.
2017
8.
M. Schweitzer, "A two-sided short-recurrence extended Krylov subspace method for nonsymmetric matrices and its relation to rational moment matching" , Numer. Algorithms, vol. 76, no. 1, pp. 1-31, 2017.
7.
A. Frommer, K. Lund, M. Schweitzer and D. B. Szyld, "The Radau-Lanczos method for matrix functions" , SIAM J. Matrix Anal. Appl., vol. 38, no. 3, pp. 710-732, 2017.
2016
6.
M. Schweitzer, "Any finite convergence curve is possible in the initial iterations of restarted FOM" , Electron. Trans. Numer. Anal., vol. 45, pp. 133-145, 2016.
5.
A. Frommer and M. Schweitzer, "Error bounds and estimates for Krylov subspace approximations of Stieltjes matrix functions" , BIT, vol. 56, no. 3, pp. 865-892, 2016.
4.
M. Schweitzer, "Monotone convergence of the extended Krylov subspace method for Laplace-Stieltjes functions of Hermitian positive definite matrices" , Linear Algebra Appl., vol. 507, pp. 486-498, 2016.
3.
M. Schweitzer, "Restarting and error estimation in polynomial and extended Krylov subspace methods for the approximation of matrix functions", Bergische Universität Wuppertal, Fakultät für Mathematik und Naturwissenschaften, 2016.
2014
2.
A. Frommer, S. Güttel and M. Schweitzer, "Convergence of restarted Krylov subspace methods for Stieltjes functions of matrices" , SIAM J. Matrix Anal. Appl., vol. 35, no. 4, pp. 1602-1624, 2014.
1.
A. Frommer, S. Güttel and M. Schweitzer, "Efficient and stable Arnoldi restarts for matrix functions based on quadrature" , SIAM J. Matrix Anal. Appl., vol. 35, no. 2, pp. 661-683, 2014.

Weitere Infos über #UniWuppertal: